Molecular Pathways Molecular Pathways: ProteinMethyltransferases inCancer

نویسنده

  • Robert A. Copeland
چکیده

The proteinmethyltransferases (PMT) constitute a large and important class of enzymes that catalyze sitespecific methylation of lysine or arginine residues on histones and other proteins. Site-specific histone methylation is a critical component of chromatin regulation of gene transcription—a pathway that is often genetically altered in human cancers. Oncogenic alterations (e.g., mutations, chromosomal translocations, and others) of PMTs, or of associated proteins, have been found to confer unique dependencies of cancer cells on the activity of specific PMTs. Examples of potent, selective small-molecule inhibitors of specific PMTs are reviewed that have been shown to kill cancers cells bearing such oncogenic alterations, while having minimal effect on proliferation of nonaltered cells. Selective inhibitors of the PMTs,DOT1L and EZH2, have entered phase I clinical studies and additional examples of selective PMT inhibitors are likely to enter the clinic soon. The current state of efforts toward clinical testing of selective PMT inhibitors as personalized cancer therapeutics is reviewed here. Clin Cancer Res; 19(23); 6344–50. 2013 AACR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epigenetic: A missing paradigm in cellular and molecular pathways of sulfur mustard lung: a prospective and comparative study

Sulfur mustard (SM, bis- (2-chloroethyl) sulphide) is a chemical warfare agent that causes DNA alkylation, protein modification and membrane damage. SM can trigger several molecular pathways involved in inflammation and oxidative stress, which cause cell necrosis and apoptosis, and loss of cells integrity and function. Epigenetic regulation of gene expression is a growing research topic and is ...

متن کامل

Gene Expression Profile Analysis during Mouse Tooth Development

Introduction: Complex molecular pathways involve in development of different tissues such as teeth. Differential gene expression patterns during teeth development generates different tooth types. Teeth development results from interactions between oral epithelium and underlying ectomesenchyme cells with neural crest origin. Teeth development are regulated by different signaling networks. In thi...

متن کامل

Intraoperative radiotherapy (IORT) induced key molecular pathways in tumor bed of breast cancer patients: a pilot study

Background: Radiotherapy (RT) is recommended to all patients undergoing Breast Conserving Surgery (BCS). Two strategies can be applied to irradiation, External Beam RT (EBRT) in addition, Intraoperative Radiation Therapy (IORT). The aim of this study was to introduce a protein biomarker panel related to molecular function of IORT. Materials and Methods: Six Breast Cancer (BC) patients as a pilo...

متن کامل

Differential genes expression analysis of invasive aspergillosis: a bioinformatics study based on mRNA/microRNA

Invasive aspergillosis is a severe opportunistic infection with high mortality in immunocompromised patients. Recently, the roles of microRNAs have been taken into consideration in the immune system and inflammatory responses. Using bioinformatics approaches, we aimed to study the microRNAs related to invasive aspergillosis to understand the molecular pathways involved in the disease pathogenes...

متن کامل

The Role of Cyclooxygenase-2 in Signaling Pathways Promoting Colorectal Cancer

Colorectal cancer is one of the most common cancers in the world. Various factors are involved in the development and progression of this disease. One of these agents is cyclooxygenase-2 (COX-2). COX-2 is a product of the PTGS2 gene and converts free arachidonic acid to prostaglandins. COX-2 is not naturally expressed in most normal cells. Noticeably, the increased expression of COX-2 has been ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013